Observations of λ/4 structure in a low-loss radio-frequency-dressed optical lattice

نویسندگان

  • N. Lundblad
  • S. Ansari
  • Y. Guo
چکیده

We load a Bose-Einstein condensate into a one-dimensional (1D) optical lattice altered through the use of radio-frequency (rf) dressing. The rf resonantly couples the three levels of the 87Rb F = 1 manifold and combines with a spin-dependent “bare” optical lattice to result in adiabatic potentials of variable shape, depth, and spatial frequency content. We choose dressing parameters such that the altered lattice is stable over lifetimes exceeding tens of ms at higher depths than in previous work. We observe significant differences between the BEC momentum distributions of the dressed lattice as compared to the bare lattice, and find general agreement with a 1D band-structure calculation informed by the dressing parameters. Previous work using such lattices was limited by very shallow dressed lattices and strong Landau-Zener tunneling loss between adiabatic potentials, equivalent to failure of the adiabatic criterion. In this work we operate with significantly stronger rf coupling (increasing the avoided-crossing gap between adiabatic potentials), observing dressed lifetimes of interest for optical lattice-based analog solid-state physics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atoms in a radio-frequency-dressed optical lattice.

We load cold atoms into an optical lattice dramatically reshaped by radio-frequency coupling of state-dependent lattice potentials. This radio-frequency dressing changes the unit cell of the lattice at a subwavelength scale, such that its curvature and topology departs strongly from that of a simple sinusoidal lattice potential. Radio-frequency dressing has previously been performed at length s...

متن کامل

Correlation between crystal structure and optical properties of copper- doped ZnO thin films

ZnO and Cu doped[1] (CZO) thin films were prepared by radio frequency sputtering. The structural and optical properties of thin films were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), optical spectrophotometer, and photoluminescence (PL) techniques. ZnO thin films showed crystalline and micro-stress defects in the crystal lattice. Annealing of CZO thin films increa...

متن کامل

Radio-frequency dressed lattices for ultracold alkali atoms

Ultracold atomic gases in periodic potentials are powerful platforms for exploring quantumphysics in regimes dominated bymany-body effects as well as for developing applications that benefit from quantummechanical effects. Further advances face a range of challenges including the realization of potentials with lattice constants smaller than optical wavelengths as well as creating schemes for ef...

متن کامل

Low Delay Time All Optical NAND, XNOR and OR Logic Gates Based on 2D Photonic Crystal Structure

Background and Objectives: Recently, photonic crystals have been considered as the basic structures for the realization of various optical devices for high speed optical communication. Methods: In this research, two dimensional photonic crystals are used for designing all optical logic gates. A photonic crystal structure with a triangular lattice is proposed for making NAND, XNOR, and OR optica...

متن کامل

Influence of optical Kerr coefficient on photonic band structures of hexagonal-lattice function photonic crystals

In this paper, we have studied the photonic band structure of function photonic crystals in which the dielectric constant of the scattering centers (rods) is a function of space coordinates. The under-studied lattice is hexagonal and cross section of rods has a circular symmetry embedded in the air background. Photonic band structures for both electric and magnetic polarizations of the electrom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014